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Let Q be a 1-dimensional Schr6dinger operator with spectrum bounded from 
- oo. By addition I mean a map of the form Q ~ Q' = Q - 2D z lg e with Qe = 2e, 
2 to the left of spec Q, and either S~ e 2 or S~ e 2 finite. The additive class of Q is 
obtained by composite addition and a subsequent closure; it is a substitute for 
the KDV invariant manifold even if the individual KDV flows have no 
existence. KDV(1)= McKean [1987] suggested that the additive class of Q is 
the same as its unimodular spectral class defined in terms of the 2 x 2 spectral 
weight dF by fixing (a) the measure class of dF, and (b) the value of d e ~ .  
The present paper verifies this for (1) the scattering case, (2) Hill's case, and (3) 
when the additive class is finite-dimensional (Neumann case). 

KEY WORDS: Schr6dinger operator; addition; additive class; KDV 
manifold; unimodular isospectral class. 

O. I N T R O D U C T I O N  

This  is the  s e c o n d  of  th ree  papers ,  de s igna t ed  K D V  (1), (2), and  (3). Le t  Q 

be the  S c h r 6 d i n g e r  o p e r a t o r  z - D 2 +  q(x)  with  p o t e n t i a l  of  class C ~  sub-  

j ec t  to a single c o n d i t i o n :  that its spectrum be bounded f rom - ~ .  
M c K e a n  ~9) [ K D V  (1) ]  i n t r o d u c e d  the  additive class a n d  the  unimodular 
spectral class of  Q, as will  n o w  be recal led.  

A d d i t i o n .  Le t  spec Q s ta r t  at  0, for  def ini teness ,  and  fix 2 < 0. T h e n  

Q h = 2 h  has  pos i t ive  so lu t ions  h ~ L 2 ( - o o ,  0 ]  wi th  S~ h 2 - = ~ ,  a n d  

h+ E L 2 [ 0 ,  oo) w i th  S~ h 2 = ~ ,  subjec t  to [h  , h + ]  = 1. 3 T h e  p o i n t  p is 

c o m p r i s e d  o f  the  projection 2 a n d  a signature + or  - .  Le t  e(x, p)  be h (x)  

1 This paper is dedicated to the memory of Mark Kac by a grateful student. Courant Institute 
of Mathematical Sciences, New York, New York. 

2 D signifies differentiation by x. 
3 The bracket is Wronski's determinant: [h_, h + ] = h'_ h + - h_ h'+. 
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1116 McKean 

or h+(x) in accordance with the latter. Then, addition of p to (the divisor 
of) Q is the map 

AP: Q--+Q-2D21ge(x ,p)  

These transformations commute among themselves: 

A~AP~-: Q --+ Q - 2D 2 lg[e(x, p~), e(x, P2)] 

they can also be inverted: in fact, 

APA P = I  

with - p  having the same projection as p but the opposite signature. The 
additive class of Q is now declared to be the smallest family of such 
operators Q' that includes Q and is closed in some technical sense to be 
determined by further investigation. It is a substitute for the KDV invariant 
manifold of Q even if the KDV flows have no existence, as for the oscillator 
Q --- - D  2 + x 2 - 1. This interpretation rests upon three facts: 

1. If p = ( 2 ,  + )  and p ' = ( ) . + A 2 ,  + ) , t h e n  

AP'A P: Q - , Q - X Q A 2 -  etc. with 4 XQ=2GI~().) 

so that the vector field X appears as an infinitesimal addition. 

2. XQ can be developed in negative half-integral powers of ). in the 
vicinity of - oo: 

XQ = ~ ) -1..2 "X,,Q 
1 

in which X 1 = i n f i n i t e s i m a l  translation, X2 = KDV, etc. are the conven- 
tional KDV fields, up to unimportant  constant factors. 

3. The fields X can be integrated without obstruction in the additive 
class to produce commuting flows. 

Points 1 and 2 can be found in KDV (1). The flows cited under point 
3 are used in Section 4. KDV (3) I1~ is devoted to them. 

4 G,..,(2) is Green's  function, i.e., it effects the map  ( Q - 2 )  1. The prime signifies differen- 
tiation on diagonal. 
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I s o s p e c t r a l i t y .  The solutions h and h+ of Q h = 2 h  m a y  be for- 
med so as to be analytic for complex values of 2 off the cut [0, o o ) ~  
spec Q.5 Now,  the imaginary  par t  B of the fundamental matrix 

[ 2h h+ h' h + + h  h' ] 
. / - 5  - - + taken at  x = 0  M = A +  B= h ' h + + h  h'+ 2h' h'+ 

is posit ive (-definite) in the open upper  half-plane [)~ = a + ~ b: b > 0]  
so that  

B ( 2 ) =  b_ [ ( 2 ' - a ) 2 + b  2] 1 dF(2 ' )  
7"[ 

with the positive 6 2 • 2 spectral weight dF= [df, j: 1 ~< i, j ~< 2].  7 The isospec- 
trality [ = u n i t a r y  equivalence]  of two opera tors  Q and Q'  is reflected in a 
relation s dF ' (2)  = G(2) dF(2) G*(2) between their spectral  weights, in which 
the factor G takes its values in GL(2, R). The nar rower  classification of 
unimoduIar isospectrality means  that  G takes its values in SL(2, R): 
det G = 1. This is the case for addit ion: if Q ' =  A~~ with the project ion 
)o(Po) to the left of spec Q, then (9) dF' = G dFG ~ with the un imodula r  factor 

O ( ) o )  - [ 2  - 2 ( p o ) ]  , /2  ) .  _ 2 @ 0 )  - c 2 ' c = e ( 0 ,  Po-------~ 

In part icular ,  the additive class of  Q is par t  of its un imodula r  spectral  class. 
K D V  (1) put  forward the conjecture that,  subject to suitable technical 
precautions,  the additive class and the unimodular spectral are always one 
and the same. 

The object of  the present  paper  is to confirm this in the three most  
impor t an t  special cases: (1) the scattering case, 9 C~; (2) Hill's case, 1~ C~; 
(3) when the additive class is finite-dimensional. I do not  know how to 
proceed further. I do not  even know how to prove  that  the general additive 
and /or  un imodula r  class is a manifold,  though I believe it to be so wi thout  
exception. 

5 This is not really necessary, as it is only automatically analytic combinations such as h _ h +, 
-h'+/h+, etc. that are employed, but it serves to fix ideas. 

6The adjective means dfu >~0, df22>~O, and (dfn df22)1/2>~ Idf121 with the natural inter- 
pretation of the radical. 

7 Weyl(~4); but see Kodaira {5) for the stylish method adopted here. 
8 The dagger signifies transpose. 
9 C~ is the class of infinitely differentiable functions vanishing rapidly at + or. 

10 C~ is the class of infinitely differentiable functions of period 1. 

822/46/5-6-21 
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1. S C A T T E R I N G  CASE 

Q is taken without bound states, for simplicity, but see Section 3 for 
how they may be included. 

S t a n d a r d i z a t i o n  a t  oo. I review the conventional scattering 
theory of Faddeev 12) and Marcenko./6)'H Let k = x / - ~ r  be real, positive 
values of k corresponding to the upper bank of the cut spec Q = [0, c~) 
and negative values to the lower bank. At x =  +o o, any solution of 
Qf=k2 f  is a combination of the free solutions e x p ( - ~ / - l k x )  and 

exp(x/7-1 kx), or nearly so, and this fact may be used to single out two 
standard solutions f and f +  with the comportment at _+ Go indicated in 

Table I: f+  has the form of a wave exp(xfT-1 kx) entering from - 0% one 
part s H ( k ) e x p ( ~ - l k x )  being transmitted to +c~ and the other 

s,2(k) e x p ( - x / - ~  kx) being reflected back to - o o .  The scattering matrix 

[sij(k): 1 <~ i, j ~ 2 ] = [-s* ( - k ) ]  

of transmission and reflection coefficients is fully specified by the recipe: it is 
of class Ca[R, SU(2)] after extension to k = 0  and tends rapidly to the 
identity at _+c~; in particular, I s l l l 2 q - I s l 2 1 2 = l ,  s12 = -s~lsll/S*l,  and 

s21 e C~. One finds [ f _ ,  f +  ] to be - 2  x/7-  1 k sit by evaluation at + Go, 
and comparison at - m  reveals that s~ =s22. The independence o f f _  and 
f+ for k :~0 means that s~ does not vanish in that case; s~(0) can vanish, 
in which case ~2 S'~l(0)=~ 0. The scattering matrix can be viewed as providing 
a patching across the cut of the functions f (x) a n d f + ( x )  attached to the 
upper bank (k > 0) and their conjugates f *  (x) and f *  (x) attached to the 
lower bank (k < 0): 

f*+ (x) = sT1 f (x) + s f2f  + (x) 

f *  (x) = s*l f _  (x) + s*2f + (x) 

~L Delft and Trubowitz ~ is recommended as the most careful treatment. 
t2 The dot signifies differentiation by k. 

Table I. 

x$  - ~  x l  +0o 

f+(x) e'/-~Zk' + sl2(k ) e - ' /TTk'  sll(k) e "~'~ k' 

f (X) s22(k) e-v~k" e v -~s7~~ + s2l(k) e -/~Sk' 
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The transmission coefficient s~ extends to the open upper half-plane as an 
outer function: 

E 1 sl~(k ) = exp f_ ( k ' -  k ) - '  lg jS~l(k')[ dk' 

In particular, s2~ determines sly, and so also the whole scattering matrix, 
via this recipe and the identity [sH[2= 1 -  1s2~12; moreover, s~ is of class 
H ~~ being of modulus ~<1, and of class I + H  2 in view of the rapid 
vanishing of s21. 

B a c k w a r d  S c a t t e r i n g .  The same is true of the auxiliary functions 

e + ( x )  = e x p (  - f +  (x)/Sl  

e_ (x) = exp(x/-~-  kx) f _  (x)/s11 

They are outer functions of class H ~176 and also of class 1 + H 2. Now the 
patching takes the form 

e* (x) + s2~ exp(2 x / ~  kx)  e +(x) = s~2e_(x) 

e * ( x ) + s 1 2 e x p ( - 2 x / - - ~ k x ) e  ( x ) = s , , e + ( x )  

leading to a very beautiful proof (~) that s2~ determines Q. The Q and Q' 
have the same reflection coefficient s2~ only if they have common trans- 
mission coefficient s~ as well. Then the differences d e  and Ae+ are of 
class H 2, 

de* + s 2 1 e x p ( 2 x ~  kx)  Ae + = sll de E H 2 

and the integral over the whole line of the function 

[Ae + [2 + szl exp(x/~- l kx)(Ae + )Z= sll Ae Ae + ~ H l 

must vanish. But this cannot be maintained in the face of JSz~[ < 1 ( k # 0 )  
unless de+ = 0, i.e., Q = Q'. This may be rephrased:for f ixed s11, the phase 
of s2~ determines Q. Besides, the conditions 

1. s21~C 7 
2. s ~ ( - k ) = s 2 ~ ( k )  

3. Is21(k)I<l (k#O)  

4. s2,(O)= - 1  if Is2,(O)l = 1 

are not only necessary, but also sufficient that s_~ be the reflection coef- 
ficient of an operator Q of scattering class, so that the family of operators 
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with fixed transmission coefficient is either the singleton Q = - D  2 with 
transmission identically 1, or else it is in natural correspondence with odd 
functions phase s21 of class C~ 

Add i t i ve  Class .  KDV (1) identified the additive class of Q as the 
preceding family with commonbtrlansmission coefficient: in fact, addition of 
p o = ( - k  2, + )  multiplies s21 y 3  ( k o + x / - ~ k ) [ ( k o - ~ - l k ) ]  -~ if the 
signature is positive and by its reciprocal in the opposite case, so that sub- 
traction of ( - k g ,  + )  followed by addition of ( - ( k  0 + l/m) 2, + ), repeated 
n-fold, results in the addition to phase s2~ of 

  phase O ] 
k o + ~ - - l k  k o + l / m - x / - - ~ k  +o(1)  • ~ 

if n I" ~ and m ~ +0o at comparable speed, from which it appears that 
composite addition and a careful passing to the limit can add to phase s2~ any 
odd function of class C ~ one pleases. 

U n i m o d u l a r  Class .  The 2 • 2 spectral weight of Q has no singular 
part, its density relative to d2 = 2k dk being ~4 

F' (2 )=B=Im at x = O  
_ 2 x / _ l k s l  , 2 f ' _ f  + 

I S l l l 2 I l e  1 2 + l e + l  2 Re(e*e '+e*+e+) - ]  
- 2k [ e ~ [ 2 + [ e + [  2 j at x = 0  

Now sp dF= dfll + dr22 typifies the Lebesgue measure class on spec Q = 
[0, ~ )  and (det dF) 1/2 = Is111 dZ, (9) and it is the precise value and not just 
the measure class of the latter that specifies the unimodular class of Q. 

S t a n d a r d i z a t i o n  a t  0. To identify the unimodular class of Q with 
its additive class (= the  KDV invariant manifold), it will be necessary to 
deal with operators Q' not yet known to be of scattering class and so not 
yet amenable to standardization at ~ .  The only general alternative is to 
standardize at x = 0. I explain how to do this for Q of scattering class. The 
solutions h eL2( - ~ , 0 ]  and h+eL2[0, ~ )  of Qh=,~h are partially stand- 
ardized by [ h ,  h+ ] = 1. They are taken positive for 2 < 0 (imaginary k) 
and may be formed so as to extend analytically off the cut [0, ~ ) --= spec Q, 
and since they do not vanish there, it is permitted also to standardize at 0 
by taking h (0)=h+(0) .  Then f+ =oh+ with a nonvanishing factor e, 

f = - 2 x / ~ - l k s , , h  /c in view of [ f _ , f + ] = - 2 x / ~ k s u ,  and 

t3 k0 is reckoned positive. 
t4 1 omit the lower left entry by reason of symmetry here and below. 
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- c 2 / 2 x / - ~ k = s n f + ( O ) / f  (0 ) in  view of h_(0 )=h§  Now, h_ and 
h§ extend smoothly to the banks of the cut and can be patched across it: 

with 

h*+(x)--ruh (x)q-rl2h+(x) 

h*_(x) = r21h_(x)  q- r22h+(x) 

r21 r221 s12c*/c Icl 2/2 x/-2-i- k 

--C2/2 x/~__k_=slle+(O)/e (0) being the outer function in the half-plane 
[k = a + x / - 1  b: b > 0] with modulus 1r22[ on the bordering line: 

--c2 I 1 
- = exp f 

2 x / ~ k  ~t x / - ~  
( k ' - k )  l lg Ir22(k')l dk'] 

Preview. The plan of attack on the operators Q' of the unimodular 
class is as follows: (a) introduce the patching coefficients [to.: 1 ~ i, j ~ 2 ]  
as for the scattering class; (b) check that Ir221 is the modulus of an outer 

function -c2/2 ~ k; (c) define s12 as r2l c/c* and verify that this is con- 
sistent with Isul = Ic1(Ir~11/2 {kl)l/2; (d) verify that s~2 is the reflection coef- 
ficient of an operator Q of scattering class; (e) verify that [ r , ]  determines 
Q'; (f) check that s~2 determines c and so also the whole of [r~j] so that the 
map Q' --, Sl2 is 1:1 and Q ' =  Q. The plan requires three technical conditions 
besides the two (nontechnical) conditions that determine the unimodular 
class, to wit: 

1. sp dF typifies the Lebesgue measure class on [0, oo) 

2. det B =  ISll] 2 

T e c h n i c a l  C o n d i t i o n  # 1 .  B =  [bij: 1 <<.i, j<<.2] is smooth on the 
bordering line except perhaps at k = 0. 

T e c h n i c a l  C o n d i t i o n  # 2 .  Near k = 0, B is of the form kC or C/k 
according as sn(0) vanishes or not, C =  [c~j] being smooth and cn(0)v a 0. 

Technica l  C o n d i t i o n  #3. ~ ( k b ~  - 1)2 elk < oo. 

D i s c u s s i o n .  In the scattering case, conditions # 1 and # 2  are self- 
evident from the form of B and the fact that e (0) and e§ are smooth 
on the (punctured) bordering line. Condition # 3 follows from the fact that 

2kb~l = Is,tl21-1e (0)12+ le+(0)l 2] 
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is smooth at k = O  and from the comportment of slle+(O) at k =  oo: both 
these functions are bounded and of class 1 + L2[O, oo). 

Ident i f icat ion of the Unimodular  and the Addi t ive 
Classes. The operator Q' is fixed, subject to the unimodular conditions 
1 and 2 and to the technical conditions #1,  #2 ,  and #3.  It is to be 
proved that Q' itself is of scattering class. 

S t e p  1. The fundamental matrix M =  A + x / ~  B is formed and it 
is noted, from technical condition # 1, that B is smooth in the closed half- 
plane punctured at k = 0. It is an elementary consequence of the Cauchy- 
Riemann equations that A shares this feature, so that mll = 2h2+ (0), m12 = 
[h'_(O)+h'+(O)] h+(0), and [ h ' _ ( 0 ) -  h'+(0)] h+(0) (=  1) are also smooth 
down to the punctured line. Besides, h+(0) does not vanish there, since 
bll = 2 Im h2+(0)=0 entails det B =  bllb22-b~2 = ISll[ 2 --0 and sl~ cannot 
vanish unless k = 0 .  The upshot is that h (0 )=h+(0 ) ,  h ' ( 0 ) ,  and h'+(0) 
are smooth down to the punctured line. This was the aim of Step 1. 

S t e p  2 is to introduce the patching coefficients [r(j] as before: 

h*(x)=rllh (x)+r12h+(x) 

h*(x)=r21h (x)+r22h+(x) 

These are unambiguous and also smooth on the punctured line in view of 

r,l=[h*,h+], r12=[h_,h *] 

r2l=[h*,h+], r~2=[h_,h*] 

Besides, from the fact that **=the identity it follows that - - r l l rzz-}-  

Ir1212= 1 upon noting that r*2 = rzl and that rll and r22 are both imaginary: 
in fact, (9) 

tSll[ 2 =de t  B =  1 - I [ h _ ,  h* ]12= 1 - I r 1 2 !  2 =  - r l l  r22 

so that r~ and r22 have the same (imaginary) signature and 1r1212= 
1 - ISll] 2 is of class C~. 

S t e p  3 introduces s12. The first point to be verified is that Ir22 ] is the 
modulus of an outer function: indeed, r22=h*_(O)/h(0)-r2~ in view of 
h _ ( 0 ) = h + ( 0 ) ,  so ]r221~l+]r2~t~<2 and ]r22[>~�89 2, 
whence ~ 5 

fo~ ( l + k a ) - l l g  + [r22 ldk~<~lg2  
- - o o  

is lg+ and lg- are the positive and negative parts of the logarithm, respectively. 
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and 

f~ (l+k2) l l g -  ]r221dk 

f 
~ 

~ r c l g 2 + 2  ( l + k  2) ~ l g - I s H I d k  
- - o o  

are both finite. The outer function -c2/2 x f - ~ k  with modulus [r22 ] may 
now be formed and the reality condition r * 2 ( - k ) =  r22(k) may be used to 
verify that the outer function c 2, and so also its root c, satisfies the reality 
condition. Now, r22 does not vanish on the punctured line, since - r  H r22 = 

[Snl 2, so lg ]r22 [ is smooth there and c inherits both properties: smoothness 
and no roots. This allows one to write 

r21 r22A s12c*/c Icl2/2 ~ - - l  k 
if k r  

with s~2 subject to the reality condition and 1s12t2 + Jsl~]2= 1, provided rll , 
and so also r22, is negative imaginary on the upper bank of the cut (k > 0). 
This follows from an examination of rj~ extended to the sector [ k = a +  
~- - [b :  a,b>>.O] by means of r,~=[h*,h+](O): in fact, the extended 
function is imaginary and root-free in the open sector, while, on the half- 
line a = 0 ,  it vanishes, h+(x) being real, and ~6 

~ r l l / ~ a  = 2[h +, h'+ ] =  -4  ~ b fo  h2 (x)dx 

is negative imaginary. This does the trick. 

S t e p  4. The function sl2 is smooth on the punctured line, 
s*2( -k)  = s12(k), and Is~212 = 1 - ] s i l l  2, so that sl2 vanishes rapidly at _+~. 
Now in order that s12 be a realistic reflection coefficient determining an 
operator Q of scattering class, it is necessary still to verify that it is smooth 
at k = 0 and takes the value - 1  tfs11(0 ) vanishes. This is what the technical 
condition # 2  is for. 

Case I. Sly(0)=0. B=kC, so the fundamental matrix M may be 
expressed near k = 0 as 

f 
l 

( k ' - k ) - '  C(k') dk' M(k 2) = (k/u) - - 1  

16 The dot signifies differentiation by a. The formula is standard. 
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up to a smooth additive correction. It follows that M is smooth in the 
vicinity of k = 0 ,  and since 0 < m l l ( k  2) increases for k i x / - ~ 0 + ,  then 
mll = 2 h 2 ( 0 )  does not vanish at k = 0 .  Then h + ( 0 ) =  (m11/2) m, h'_(O)- 
h+(O)=mJh+(O), and h ' ( 0 ) - h + ( 0 ) =  l/h+(0),  and so also h'_(0) and 
h+ (0) individually are smooth at k = 0, and [rij ] inherits this feature. Now 
-rllrz2 = ISlll 2 imitates a multiple of k 2 and r22 = [h*_, h_ ] changes sign 
at k = 0. This can happen only if r22(k ) ~ r~2(0 ) k ,  with r?2(0 ) r 0: the only 
other possibilities (r22 vanishing twice or not at all) do not permit the 
signature change. But then t2kr221, alias the modulus of the outer function 
c 2, imitates 2 Ir?2(0)l k 2 in the vicinity of k = 0 ,  and c 2 itself imitates a 
negative 17 multiple of k 2, so  that c/c* is smooth, and with it also s12 = 
r21c/c*. The value s12(0)= - 1  is easily elicited: r~ vanishes in the same 
style as r22 and r~ + r12 = r21 + t'22 , SO r12(0  ) = r21(0 ) is  real and of modulus 
[1 + rl~(0)r22(0)] ~/2= 1, and since c/c*= - 1  at k = 0 + ,  it suffices to rule 
out r21(0)= - 1  by means of the implication h*_(0)= - h  (0), which con- 
tradicts the positivity of ml~ = 2h2_(0) at k = 0 .  

Case 2. sH(0 ) r  The discussion is similar. Now B=C/k, k[ro] is 
smooth, r~l ~ k ,  and r22 ,,~ 1/k up to constant multipliers (or the other way 
around), c 2 imitates a positive constant in the vicinity of k = 0, and c/c* is 
smooth, as is r2~ and so also s~2. The details are left to the reader. 

S t e p  5. It is to be proved that Q' is one and the same as the scat- 
tering class operator Q determined by the reflection coefficient s12. The 
present step elicits the preliminary fact that Ira. ] determines Q'. The point 
of departure is the fact that the harmonic function ~ = imag  lgmH(k 2) is 

bounded between 0 and ~ in the open sector [k = a + ~ b: a, b > 0] in 
view of the positivity of Im ml~ for Im k 2 > 0 .  Now 18 

rll + r22 = - 2  x /Z- i  - sin ~ and r12 + r21 = 2 cos ~b 

determines this function on the boundary of the sector and so in the large. 
Then m l~ itself is known up to a multiplicative factor, which is fixed by the 
development m ~ ( 2 ) ~  ( - 2 )  1/2 at - o %  and so one also knows 

rll Ih + (0 )1 -2=2  Im h'+(O)/h+(O) 

Q' on the half-line x>~0 (Ref. 3; see also Ref. 9); which determines 
similarly, 

r22 Ih_(O)1-2= - 2  Im h'(O)/h(O) 

determines it on the left half-line. 

17 c 2 is positive for imaginary values of k. 
~8 h '_(O)--h '+(O)= 1/h+(O) is used; also, roll = 2h2+(0)- 
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Step 6. The proof is finished by checking that s12 , or, what is the 
same, s21 = -sT2sH/s*l, determines the outer function c and so also the 
whole of [r~]. To do this, I introduce the functions e+(0 )=  ch+(O)/Slt and 
e_(O) = -2 ~--1 kh (O)/c and note the patching: 

e*(O)+s21e+(O)=slle (0) 

e*(O)+s12e (0) =s l l e+ (0 )  

It follows that e+(0) and e (0), and so also -c2/2~--lk=slle+(O)/ 
e (0), are determined by s2~, as in the section on backward scattering, 
provided e (0) and e+(0) are of class 1 + H2: in fact, it suffices to deal with 
e+(0), since e_(0) is changed into e+(0) by the reflection x--* - x .  The 
proof is subdivided into brief items. 

I t em 1. - c 2 / 2 ~ k i s o f c l a s s H  ~. 

Proof. This function is outer and 

c 2 e+(O) e*(O) 
2 ~ - - ] - k  s12 = -'---'7"~xSll--S12e_tu) = ~ =1 

by the second line of the patching recipe of Step 6, so - c2/2 ~ k is of 
modulus not more than 2 on the bordering line, and this bound is inherited 
in the half-plane. 

I t em 2. - c2/2 ~ l  k is of class 1 + H 2. 

ProoL Let 0 be the phase of -c2/2~-1 k: it is the conjugate 
function (Hilbert transform) of lg I r 2 2 1 ,  and since this function is of class 
L 2, we also have ~ 0 2 < or; in particular, 19 

I-c2/2~--lk - II = 11r221 exp(x/-Z]- 0) - 11 

= 1(Ir22]- 1) e x p ( x f ~  O) + exp(x~-  1 0 ) -  11 

~< [sx21 + 101 

SO 

f l - c 2 / 2 ~ l k - 1 1 2 4 2  Is1212+2fO2<ooontheborder 

and this bound is inherited on horizontal lines in the half-plane, much as in 
Item 1. 

I9 l_ls121<~lr221<~l+ls12[, so  lg  Ir221 v a n i s h e s  r a p i d l y ,  etc. 

822/46/5-6-22 
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I t e m  3. The root  c ( - 2 x ~ - l k )  -1/2 is of the same type: it is of 
class H ~ c~ 1 + H 2. 

Proof. Routine. 

I t e m  4. 1/Su is bounded  on [1, oo) and of class L2[1,  Go). 

Proof. Self-evident. 

I tem 5. ( - 2 x / - - ~ k ) l / 2 h + ( O ) ,  and so also e+(O)=ch+(O)/s n,  is 
an outer  function. 

Proof. It  suffices to check that  4kh2+(O)=2kmll is outer. N o w  2~ 

O(k) = _2km11(k2) = ___2k ( ) l - i t )  1 d f l ,  = -  (k' - k) 1 df, l 
7c oo 

SO 2t 

I f  ~ 1 
rc _ o o k ' - k  df~ 

in which dJo = [ ( k ' ) 2 - 1  - 1] l d f l  1 is of total  mass  m 0 <  oo. This permits  the 
appl icat ion of Carleson 's  inequality(4): if b > 0  is fixed and if K c  R is the 

set of points  where ]~b(a + ~ b)] >/2", then 

fx (a2 + 1) -1 da << 2-= x 4rcmo 

so that  

f I x / ~ l ( a + x / - ~ b ) ( a 2 +  1) - l  da<<.rc + 4gm0(~x/2-  1) - I  

independently of b > 0. The rest is routine: (k + ~ 1) 4 @, and so also 
(k + x / - ~ ) - 6  ~, is of class H1/2; in part icular,  the latter is the produc t  of 
an inner and an outer  function, and since it is smooth  down to the 
border ing line and root-f lee above and below, the inner par t  is absent. 

I t e m  6. e + ( 0 ) -  1 is now seen to be the produc t  of an inner and an 
outer  function, and to check that  it is of  class H 2 it suffices to confirm 

20 dfu is extended from k > 0 to k < 0 symmetrically. 
21 The dot signifies differentiation by k. 
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~ ]e+(0)--112<r in fact, by Items 1-5, it suffices to check that I0=  
~ le2(0)l < oo and that 

l ( - 2  ~7-1  k) ~/2 h + ( O ) -  112< oO 

rll and r22 have common (imaginary) signature 
and 

r~, + r22=h*+(O)/h +(O)-h +(O)/h*+(O) 

11 z f l  ~ 

Proo f  That I o < ~ .  

SO 

le2+(O)l = I - 2 ~ k l  I - c 2 / 2 ~ - 1 k l  Ih2(O)l Is/j21 

= 2 k  [r22[ Ih2(O)l [s~21 

~< 2k [h2+ (0) * - h2(O)[ Is,x21 

= 2kbll lsu 2] 

is summable on [0, 1 ] in view of technical condition #2.  

Proof That / 1 < oo. It suffices to prove that - 2  ~ kh2(O) is of 

class 1 +L2[1 ,  oo) since, with - 2  x f - ~  kh2+(O) = 1 + 0 ,  

1(--2 ~ - 1  k) x/2 h + ( 0 ) -  1[ = I(1 + r 1] 

is majorized by, for instance, 5 101. But 

- 2 ~ kh2+ (0)= - ~ f - ~  kmll = - ~ / - 1  kall + kbn 

and ~7(kb~l - 1) 2 < oo by technical assumption #3 ,  so only yT(kan) 2 < 
is moot, and that follows from the identity 22 

oo 

showing that -kal~ is the conjugate function of k b l l -  1. The proof is 
finished. 

22611 is taken as an odd function ofk'. 
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2. HILL'S CASE 

Q is now to be of period 1: its spectrum consists of (dark) bands 
E2~ + 1,2~- ] with intervening (light) gaps [-2~-, 2 + ], as in Fig. 1, in which 

- ~ < 2 ~ - < 2 1 ~ < ) ~ - < 2 ~ < 2 ] < . . . ] "  + ~  

and the numbers  2~ and 2 + have the c o m m o n  development nZTz2+ C o q- 
c~n -2 + c2n-4 + .. .  as n T ~ .  I suppose, for definiteness, that  all the gaps 
are open, but see Section 4 for the case of g < ~ open gaps. The 2 • 2 spec- 
tral weight of Q is dF= B d2, in which (9) 

-t--1/2 2h2(1) h ~ ( 1 ) - h l ( 1 )  

hi and h2 are the solutions of  Qh=2h  with h l ( 0 ) = h ~ ( 0 ) =  1 and h ' l (0 )=  
h 2 ( 0 ) = 0 ,  A is the so-called discriminant � 89  , and the signs 
alternate on the bands of spec Q starting with plus; in particular, on 
spec Q, (1) sp dF typifies the Lebesgue measure class, and (2) det B =  1. It 
is to be proved that if  Q' belongs to the same unimodular spectral class as Q, 
i.e., if its 2 • 2 spectral weight also satisfies conditions 1 and 2 on spec Q 
and vanishes elsewhere, then Q' is also a Hill operator and so belongs to the 
additive class of  Q.23 Unlike the scattering case, here no technical con- 
ditions are needed, due to an automat ic  compactness.  

S t e p  1. Let QO_ and QO be the side operators obtained by 
restricting Q to functions that  live on ( -  ~ ,  0] ,  or on [0, ~ ) ,  and vanish 
at x = 0. The corresponding spectral weights are 24 

d f O _ = l i m _ i m h ' ( O )  , h+(O) b + o ~ da, df  ~ = lim lm - -  da 
b~o h+(0)  

and it is the content  of Step 1 that  df ~ = d f  ~ in the open bands. The proof  
can be repeated verbatim from Item 7, Section 4 of K D V  (1). The moral  is 
that  the mass distribution d f ~  ~ representing Im[h'+(O)/h+(O)+ 
h'_(O)/h (0)] is concentrated in the closed gaps. 

23 KDV (1); see also McKean and Trubowitz 112~ for general background. 
24 h'(O)/h(O) is taken at 2 = a + ~ b in the upper half-plane; see KDV (1). 

~ A A A A 

xq 

Figure 1 
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Step 2. m~ =2h  (0) h+ (0 ) i s  real, analytic, and (strictly)increas- 
ing in the open gaps, 25 and so has at most one (simple) root in any one o f  
them. The functions h and h+ are determined individually at any point of 
an open gap as the solutions of Q h = 2 h  with h ~ L 2 ( - ~ , 0 ] ,  h+ E 
L2[0, ~ ) ,  and [h_ ,  h+]  = 1; no further standardization is made. Then, if 
h (0) or h+(0) vanishes, the other does not, and a signature can be 
ascribed to the root according as h ( 0 ) = 0  or h + ( 0 ) = 0 :  in short, 
df  ~ - d f  ~ has at most one singleton mass in any open gap, and either it 
belongs to df  ~ and not to df  ~ or the other way around, in accordance 
with the signature; in particular, 

j(O) = -- [h+ (O)/h + (0) + h "  (O)/h (0)] 

is a meromorphic function having <<. 3 poles per closed gap. 

Step 3. The presence of a pole of j(0) inside a gap precludes any 
poles at the ends of the gap. 

Proof. Let the gap be [21,  2~-] for definiteness, and let r be the 
residue of j(0) at the left end. A small displacement of the origin from x = 0 
to x = x'  changes mu into 2 h  (x ' ) h+ (x ' )  and causes the interior root (if 
present) to move slightly: clearly, no other interior root can appear, so the 
mass r sticks at the left, only now it depends upon the displacement: 
r = r(x'). Let 

j ( x )  = - -  [ h + ( x ) / h  + ( x )  + h '_  ( x ) / h  _ ( x ) ]  

Then j ( x ' ) ~  ( 2 -  2 1 - ) - l r ( x ' )  for 2 above 2 E and not too close to the next 
pole of this function, and from 

j ' ( x )  = 0(1  ) + (h+/h + )2 + (h'_/h )2 >/O(1 ) + �89 

it develops that, to leading order, 

r(b) - r(a) _ f j  
)o _ 2 7  . .  j ' ( x )  dx 

>~ -~ f ( x )  dx 

=~fj  L2_2~j dx 

25 mu(2  ) = (1/~) S~(A.'-  2) -a dfal off the spec Q. 
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for small a ~ 0 ~< b. This cannot be maintained for 2 $ 2~ unless r(x)= 0 for 
almost every value of x between a and b, in which case r(b)>~ r(a) and 
r(0) = 0 follows from r(b) >~ r(O) >1 r(a) by choice of a and b. The argument 
proves still more: if no interior pole is present, then a small displacement 
must move any end pole a little distance inside the gap, the upshot being 
that j(0) has at most one pole in the closed gap. 

S t e p  4 is to check that a pole of  j(O) is present in every gap. 

ProoL The spectral representation 

l f b  (2'-2)-l[hZ(x)b,l+Zhl(xlh2(x)bl2 2h (x) h+(x)=-~ a,ds 

+ h~(x) b22] d2' 

will be used to prove that 2h (x)h+(x) tends to - ~  as 2,L2 2 and to 
+ ~ as 2 T 2+, forcing the presence of an interior root. Let 2h_ (x) h + (x) 
stay bounded as 2 1" 2 +, say. Then 

f'-n+l (2' - -  2n + ) - -  1 [ - h 2 ( x )  bll -~- 2hl(X) h2(x) b,2 + h~(x) b22] d2' < oo + 

so that, by a self-evident manipulation, 

( 2 ' - ) ~ +  ) 1[hl(X)131/2~-h2(x)b1/2212~ll - 

+ 2 I h l ( x )  h=(x)l  [(611 bz2) 1/2 +_ b1=3 

is summable just to the right of 2 +. Now [hl ,  h2] = 1, so for any choice of 
x = xl ,  one can find a nearby point x = x2 at which det[hi(xfl: 1 ~< i, j~< 2] 
is different from 0 at 2 +. Then, the summability of the last display for both 
values of x, combined with the fact that det B = 1 on spec Q, forces the 
summability of 

( 2 ' - 2  + ) 1�89 + ) 

and this is contradictory. The presence of an interior pole has been confir- 
med for most values of x. Its motion is easily deduced. Let the location of 
the root be #,(x).  Then, from the vanishing of h_(x)h+(x)  at 2 = / ~ ( x ) ,  
one  finds 26 (h _ h + )' + (h _ h + )" #'n = 0, whence 

(h h+) '  signature 
~ ' . (x )  = - -  - 

(h h+)" (h h+)" 

26 The dot signifies differentiation by 2. 
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in which the signature - (h h+ ) ' i s  - 1  or +1 according a s h  ( x ) = 0 o r  
h + (x) = 0, in agreement with the convention of Step 2. This shows that the 
pole moves right or left as dictated by its signature until it hits 2 2 or 2 +, 
whereupon it changes signature and moves back in the opposite direction, 
unless it should just disappear. But this cannot happen while the pole is 
inside: in fact, the number #',,(x) is just the residue of j (x)  at the pole and 
does not vanish, by inspection, so disappearance (= the  vanishing of the 
residue) is possible only at an end, in which case the pole immediately 
reappears moving oppositely, so one may say that a genuine (or a virtual) 
pole of  j (x )  is present for every value of  x. Let Pn be the pair comprised of 
the projection #n and the signature _+ 1 previously ascribed if the projection 
is inside the gap (and indifferently ascribed if it is not). The content of 
Steps 1-4 is that the family [Pn: n/> 1] is a realistic Hill divisor associated 
with the periodic/antiperiodic spectrum 2~ < 2 i- < 21 ~ < 2~- < 2 ]  " ' ,  and it 
is natural to hope that one could recover Q' from it by standard methods. 27 
The remaining steps implement this idea. 

S t e p  5. The residue of j (x)  at its nth pole is #~,(x), so 2s 

j(x) = - [ h ' + ( x ) .  h ' ( x ) 7  
Lh+(~ )+~J  = -  E (#,,-,~)-~#;, 

Now, if 2 < 0 and if dfb~o is the sum of the old mass distributions df  ~ 
updated for the displacement of the origin from 0 to x, then 

i f0 (# _;o)-2 I~'=1 =-1 ()o,_ 2)_2 dfgo()o,) 
, 7 =  I 7~ 

_ 

Lh_---~x) h+(x)l 

and since this is under good control, the first display can be integrated 
under the sum, first with regard to x, and second with regard to 2. This 
produces 

h _  (x)  h + (x)  _ 1 ]  ~ . ( x )  - ~t 
h_(0) h+(0) . = 1 ~---~-Z- 2 x a functi~ ~  al~ 

with good convergence of the product in view of 2 2 ~<#n ~< 2~ + and the 
common development nZ~r 2 + c o + cln 2 4- " "  of 2 2 and 2 5. The final fac- 

;7 McKean and Trubowitz "2) is recommended for background at this juncture. 
;8 The fact that j is the difference of positive harmonic functions is used. 
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tor is found to be unity by noting that both the product and the left-hand 
side take the value 1 at 2 = - c o ,  the upshot being that 

2h (x)h+(x)=D(2) FI (nrc)-2[#n(x) - 2 ]  
n = i  

with a factor D depending upon 2, but not upon x. This was the aim of the 
present step. 

S t e p  6 is to prove that 1 /D=(32-1)  1/2, A being the Hill 
discriminant for Q. It follows that 

1. The potential of Q' can be expressed by the customary trace 
formula: 

2 o + [-2~ + 2 + - 2#1(x)] - [-,~2 -t- 2 + - 2#2(x)] -/- - "  

as can be verified by routine estimation starting from 

[h (x) h + ( x ) ] - l ~ 2 [ q ( x ) - 2 ]  1/2 ( 2 5 - o 0 )  

2. Moreover, 

, sign p, 2(A 2 - 1 )1/2 taken at # ,  

#,(x)  = (~-h~--~. = _+ (mz) 21-[m~,(mzr) 2(#m--#,)  

this being the customary Hill recipe for the motion of the divisor 
[p , : n  ~> 1]. Condition 2, combined with 1, confirms that Q' is a Hill 
operator belonging to the additive class of Q. 

Proof That 1 / D = ( A 2 - 1 )  1/2. The radical ( A 2 - 1 )  u2 is taken 
positive for 2 < 0 = 2o ~ and is then determined by continuation off the cut 
[0, oo). D is real and analytic in the gaps, by inspection. It is also 
imaginary on the upper bank of any band (and conjugate imaginary on the 
lower bank). This follows f rom (9) 1 = d e t  B =  1 - [ [ h  , h* ] l  2 in the bands, 
with the implication that h*=ri~h , the factor r~i=[h*,h+] being 
imaginary, so that 2 h _ ( x ) h + ( x )  is likewise imaginary in the bands. Now 
D 2 is automatically analytic in the slit plane C-spec Q, and since it satisfies 
the reality condition [D2(,i .*)]*= D2(2) and is real in the open bands, it is 
also analytic in the whole complex plane, except perhaps at 2o ~, 2f-, 2~, 22, 
etc. The origin is now adjusted so that h_(0)  h+(0) tends to - c o  at the left 
end, and to + oo at the right end of every gap, as in Step 4, the right end of 
the infinite gap ( - o% 0] included. Then 2,~- < #n < 2+ for every n/> 1, D is 
comparable to 2h (0)h+(0)  at each of the possible poles of O 2, and the 
fact that the spectral weight of Q' is without singular part implies that such 
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poles are of degree precisely 1. Now A 2 -  1 is analytic in the whole plane, 
with (simple) roots at the poles of D 2, so the product F =  (A 2 -  1)1/2 D is 
analytic and root-free in the whole plane, and tends to 1 at - oe in view of 
the estimates 

(zJ 2 - -  1) 1/2 ~ exp( __ ~ ) 1 / 2  

1~I (nTr) 2(#, _ 2) ~ ( - 2 )  -1/z exp(-2)l./2 
n = l  

m l l ~ ( - - 2 )  1/2 

The point at issue is whether the function F is identically 1, and this is now 
confirmed by checking that it is of exponential type: being root-free, it 
could only be of the form exp(A + B2) and A = B = 0 if F ~  1 at - ~ .  The 
proof is not difficult: lg + [ F [ r e x p ( x / - ~ O ) ]  ] is majorized by l g r +  
lg + Irn11(r e x p ( ~ -  1 0))[ on nice circles r = (n + 1/2) 2 rc 2 ~" o% by routine 
estimation, and, for the rest, it suffices to confirm the finiteness of 

I= fl~r 2 dr f~lg+ Imll(rexp(x/-~ O))l dO 

Now Item 5, Section 2 applies without change to show that ml~(k 2) is an 
outer function in the upper half-plane [k = a + x f ~  b: b > 0], so that 

f]~ lg + e x p ( x f - ~  dO Imll(r 0))l 

But 

7"C 

approximates 4(k ' ) -  1 

lg + Imjll(r exp(x/-2-i- 0)) dO 

_ 0 f ~  dO rl/2 sin lg + Im11L((k') 2) 

Ik' e- -pIT-: 0/I 2 
dk' k '  + r 1/2 

lg + Im111-k-;-lg k ' - r / 2  

dk' 

k' + r 1/2 
l r 2 dr lg 

as k ~" oe and 4k' as k ' l  0, so I is controlled by 

fo~ Iml]] dk' < o~ 
( k ' )  2 q- 

The proof is finished. 
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3. THE F I N I T E - D I M E N S I O N A L  A D D I T I V E  CLASS 

The additive class of Q is now assumed to be a (smooth) compact or 
noncompact manifold of dimension g < ~ .  This case is coextensive with the 
Neumann system, 29 as will be seen below. 

Discussion of spec O. The first task is to prove that spec Q is 
comprised of consecutive, closed, finite bands E2+~, 2 7 ]  ( i=  1 ..... g), 
followed by an infinite band E2 +, ~ ) ,  and that the (honest) bands that do 
not collapse to singletons (bound states) have (a) nonsingular spectral 
weight and (b) additive invariant d e t B = l .  This determines the 
unimodular spectral class of Q. 

S t e p  1. KDV (3) is devoted to the integration of the vector fields 
(infinitesimal additions) X: Q ~2G '~ (2 )  ( 2 < 0 )  3~ to produce commuting 
flows in the (suitably closed) additive class of Q. This class is of dimension 
g, so that any g + 1 fields Xi formed for 2; < 0 
dence: CoXo + ""  + egXg = 0 with (Co ..... cg) r 0. 

X0rnn(2) = (2 - 2;) ~[m~(2) ml2()/o) -m12(2) 

2Xom12(2) = ( 2 - 2 6 )  ~[m~(2) mz2(26)-m22(2 ) 

Xom2z(2 ) = (2 , -1 ,, - 20) [m12(2) mz2(Z0)-m22(2) 

so the vanishing of CoXo + "'" + egXg implies an 
tal matrix: 

# t l l m = m l l ~  f 

with ~ r =  [n3gj: 1 <~i,j<~2] and 

( i=  0,..., g) have a depen- 
Now, for fixed 2~<0,  ~J~ 

m11(2;)] 

rnl ,(2;)]  + mn(2)  ma,(2;) 

m12(2;)] +/7712(2 ) m11(2;) 

identity for the fundamen- 

r~t 11(2 ) = Co(2 - 2o) - '  m11(2~) + . . '  + eg(2 - 2g) - t  m1~(2~ ) 

w i t h  n7/12 and th22 being formed in the same way except that c0 m ~(2 ; )+  
�9 "" +Cgm11(2'g ) is added to rh22; in particular, rhll is a nonvanishing 
rational function of degree ~<g + 1. Now M is real and pole-free on [0, oo), 
so d F =  ( r h : l ) - ~ F I  x d f~  is a (2 x 2) rational multiple of df~  and 

(det dF) ~/2 = (det B) ~/2 d2 = Irhn] - ~ [,vY/11/~22 - (/~/12) 2 ] 1/2 X df l  ! 

This was the aim of Step 1. The tacit assumption that rh~ is root-free on 
[0, ~ )  is not needed. The issue is raised only at jumps of dfl ~ and it is easy 
to see that rh~2 and /~22 vanish at least as hard as rh~l at such a place: in 
short, the formulas are valid in every case. 

29 See Ref. 13 for background. 
30 Gxy(2) is Green's function, as before. The prime signifies differentiation by x on diagonal. 
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S t e p  2 is to check that the singular part of  df11 is comprised of  at 
most g singletons. 

Proof. The rational function (rh11) 2 [ f f / l l n V / 2 2 - - ( # t 1 2 ) 2 ] = - - m o o  

appearing in the formula for (det B) 1/2 vanishes on the singular support  of 
dr11, so the presence of a singular continuum forces moo to vanish iden- 
tically, contradicting mx21moo = - d e t M = l .  Now let moo vanish at a 
singleton of dfl 1 . Then mll = _(moo ) -  1/2 cannot be balanced nearby if moo 
has a simple root, so the numerator  det a4 of moo has roots of total degree 
at least 2g + 2 on the cut and an extra root of degree at least 2 at oo. This 
is too much, since the degree of this function is at most  2 g + 2 ,  so it 
vanishes identically, and that is not the case either: in the vicinity of the 
pole 2~, det M ~  c 2 ( 2 -  2~) -2 det M, and the vanishing of the left-hand side 
at every pole forces c i=  0 for every i =  0 ..... g.31 

S t e p  3 is to check that det B is identically 1 on the nonsingular part 
spec' Q of spec Q. 

Proof. m21 = 1/moo is a rational function taking real values on the 
cut. Now, 32 mll = a11 + x /Z - i  - b11, and the reality of m21 implies that alibi1 
vanishes; similarly, m22 = (m 11 nS/22/F~/11 )2 is real, s o  a 2 2 b z 2  vanishes, too, and 
likewise alzb12. Now - 1 = det M is used to confirm that det B = det A + 1. 
This reduces to det B = 1 - a122 on spec' Q, since sp dF is now proportional  
to bll d)o with the implication that bll > 0 and all = 0 at almost every point 
of spec' Q. It remains to prove that al2 = 0 at almost every point of spec' Q. 
But a12 r  implies b12=0, and this occurrence on a subset of spec' Q of 
positive measure violates b i ~ = b 12 th 11//77/12 unless the rational function rh 12 
vanishes identically, in which case m~2 itself vanishes identically, with the 
implication ~ that Q is symmetrical about  x = 0 .  Now the desired con- 
clusion (det B = 1 ) is insensitive to displacement of the origin, so it can fail 
only if Q is symmetrical about  every origin. This happens only if Q = - D  2, 
up to an additive constant, in which case det B =  1 anyhow. This excep- 
tional case ( g =  0) is left aside below. 

S t e p  4 is to note that spec Q consists o f  a finite number of  consecutive 
disjoint (short) bands, followed by a (long) band extending to o0. The short 
bands may be honest or they may collapse to points (bound states); it is on 
the latter that the singular part  of the spectral weight resides. The proof  
starts by noting that 

--m~l = (F/~ll)2(det 21~r)--1 = b~ 1 _ a121 _ 2 ~ a~l bll = b21 - a~a 

3~ det M = -1 is used again. 
32M=A+x/'---'~B=[alj+x/'~bij: 1 ~<i,j~<2]. 
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is (a) rational, (b) real, (c) positive at most points of spec Q [ b l l  > 0 = 

a11], (d) negative outside [ b H = 0 ] ,  and (e) ultimately positive [specQ 
extends to ov ]. It follows that the nonsingular part of spec Q consists of a 
finite number of (honest) short bands followed by a long band extending to 
o0. The rest of the proof depends upon the fact that, in any honest closed 
band, short or long, b~l coincides with a rational function, free of interior 
roots and poles, having, at the ends of the band, poles of  degree at most 1. 

Proof. b21 = - m ~  in the band and any interior root or pole is of 
degree at least 2, b2~ being of one sign. But such poles are excluded by the 
summability of b l l  in the band; similarly, such roots are excluded by the 
summability of Im( - -1 /mH)=l /bH.  Now, b~ takes both signs in the 
vicinity of an endpoint, so the argument fails at such a place: it shows only 
that the pole (or root) is of degree 1 or less. 

The disposition of the singular spectral weight can now be clarified: it 
is carried by collapsed bands (bound states) disjoint from the honest bands. 

Proof. The existence of a lump of singular spectral mass at a point a 

of a closed honest band implies that Im mll(a + ~ b) is underestimated 
by a multiple of lib as b ~ 0. But then the rational function m21 has a pole 
of degree 2 or more, and that was ruled out just now. 

Step 5 is to determine the form ofmH.  Let [2,+_ ~, 2 7 ]  ( i=  1 ..... n) be 
the (honest and dishonest) short bands, let [22,  oo) be the long band, and 
introduce the radical: 

R(,~) = (,~o ~ - ;~)~/2 ~ [(,~,: _ ~a(,~+ _ 2)] ,/2 
i = 1  

It is to be proved that mll = P/R in which P is a polynomial of  degree n hav- 
ing (mostly) one simple root in each of the closed gaps [27,  2 + ] (i = 1 ..... n) 
separating the bands. 

Proof. m~ is imaginary on the bands and real on the gaps, as is R, 
so P = RmH is real on the cut and so extends to a meromorphic function of 
2 e C, with possible poles at the bound states and at the ends of the honest 
bands. The fact is that no such poles are present: R knocks out any pole of 
the first kind, and at the ends of an honest band it cuts the degree of any 
pole down to ~< 1/2 and so to 0. It follows that P is entire and, since its 
square is rational, it must be a polynomial, of degree n in view of the 
estimate P =  Rm~l ~ ( __ ~ )n +1/2--1/2 at --oo. Besides, P has roots only in 
the closed gaps, since it cannot vanish off the cut or in the interior of an 
honest band where mH = x f ~ - b ~ l = A 0 :  in fact, it has (most ly) jus t  one 
(simple) root inside each gap, since a small displacement of the origin 
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ensures this outcome, just as in Step 5, Section 2: in short, the roots/~i of P 
fall in the closed gaps [)~ 27 ] (i = 1,..., n) and mll = P/R. 

S t e p  6 introduces the divisor P~,..-,Pn comprising the roots l~i 
( i=  1,..., n) of P ( 2 ) = 0  and the associated signatures, as in Section 2. The 
roots move (in response to displacement of the origin) back and forth in 
their gaps according to the rules of Section 2: in fact, nothing is changed 
except that the only way for roots to meet bound states is to collide in 
pairs, one root coming from the left and one from the right; for details, see 
the amplification below. 

S t e p  7 is to check that Q is determined by the divisor [pi: i<~n] 
provided the latter is in general position, meaning that each root is inside its 
gap. It is a by-product that the dimension g of  the additive class cannot 
exceed the number n of  short (honest and collapsed) bands. 

ProoL The divisor determines ml~ by the formula of Step 5: mH = 
' h - h '  P/R. Now consider the functions h + (0)/ + (0) and (O)/h (0) determin- 

ing the side operators QO and QO. Their sum is - 1/mH, which is in hand, 
while their difference is the rational function 2m~2/m~= 2rh~2/rh11. The lat- 
ter has (simple) poles at the roots #i (i<.n) of mu and no others, as one 
can easily check. The corresponding residues 

ri= 2m~2(l~)/m'l~(l~i) = --2 sign pi/m'~(/~i) (i<.n) 

are also determined by the divisor, and the function itself vanishes at oc in 
view of the fact that h+(O)/h+(O) and -h'_(O)/h (0) have the common 
development [ q ( 0 ) - 2 ] ~ / 2 +  0(2  -3/2) at - o  e: in short, the divisor deter- 
mines -1 /mH,  2m12/mi~, and so both h+(O)/h+(O) and -h'_(O)/h_(O), 
individually. 

S t e p  8 is to pin down the dimension g = n. 

Proof. The fields X0: Q-~2G.'~x(2~) ( 2 ; < 0 )  are employed. By the 
first formula of Step 1, 

0 = (Xoml,)(l~i)+m'l,(t~,) Xo#~- ~ - - ~ o  m,2t## + m'll(#,) Xofli 

so that 33 

mu(Z~) sign Pi 
Xopi-(2,o_izi)m)l(pi)  (i<~n) 

33 -sign P i -  ml2(J/i). 
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Now let X1 ..... X,, be the fields corresponding to any fixed 2'1 < ""  < 2" < 0 
and compute 

mll(2;) sign pj 
det [Xd2/1 ~< i, j ~< n] = det 

(,l; - ~j) m ; , ( ~ : )  

This cannot vanish, by inspection, so the infinitesimal additions allow us to 
move the divisor at pleasure (in the small): in short, the additive class has 
at least n (~<g) degrees of freedom. The equality n = g is now confirmed by 
Step 7. This finishes the discussion of spec Q. 

Addi t i ve  and U n i m o d u l a r  Classes. The unimodular class of Q 
is determined by the preceding spectral discussion: it consists of all 
operators Q' having the same (honest and collapsed) spectral bands as Q, 
with singular weight confined to the bound states, nonsingular weight con- 
fined to the honest bands, and det B = 1 on the latter. Now it is a triviality 
to confirm by familiar methods that, after a small displacement of the 
origin, such an operator Q' determines, and is determined by, a divisor in 
general position, just as for Q. Then the identification of the additive and 
the unimodular classes comes down to this: every divisor in general position 
appears already in the additive class. The proof employs the infinitesimal 
additions of Step 8 to move the roots of rnl~ to any (general) position one 
pleases, whereupon it suffices to prove that the signatures of the general 
divisor can be changed at will within the additive class. 

Proof. 34 Let p = ( 2 ,  _+1) be fixed with 2 < 0  and let e(x, p) be h (x) 
or h+(x) according to the signature of p. The addition AP: Q--- ,Q- 
2D 2 lg e(x, t0) can be repeated, with the following result: 

A 2 p Q = Q - 2 D Z l g  h2+ if s i g n p =  +1 

= Q - 2D= lg h 2_ if sign p = - 1 
- - o o  

as can be readily confirmed by the rule for composite addition: 

AP'APQ = Q - 2 D  a lg[e(x, p'), e(x, p)]  

by taking p ' =  (2+A2,-t-_ 1), inserting (A2) -1 after the logarithm, and 
making A2~0. One applies A =p when p = p o =  (/~o, +1)  is a point of the 
divisor of Q; this is not a true addition as construed before, #o not being to 
the left of spec Q. It is to be proved that Q' = A2pQ belongs to the additive 

34 McKean and van Moerbeke, ol) p. 221, served as a model. 
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class of Q and has the same divisor as Q except that the sign of Po is 
reversed. Let e o=e (  -, Po) for brevity and sign po = +1 for definiteness, let 
Z = $2 eg, and let A = A 2p~ 

I t e m  1 : 

Ah+ = h +  - -  ( , ~ - / / o )  - 1  Z-leo[eo, h +]  

= h + + Z  1% .~ eoh_ 

off the cut [0, oo), i.e., this function solves Q'h=2h and is of class 
L2[O, ~ ). 

Proof. Q'h=2h, by routine computation, and ~ ]Ah+] 2 cannot 
diverge, since 

n ao 1 2  n 2 '~fo [ z le~ e~ =fo If7 e~ dZ-l 
= Z  -1 eoh + + 2  Z leoh + eoh+ 

o 

co g ( ' ~ 1 7 6  2 31 /2  

.<f. <-/ ' /2[j  ~ h+J 

f. 
v 

Ah =h - (2 -11o) -~  Z-leo[eo, h ] = h  - Z - ~ e o  eo h 
- -  o O  

also, [Ah_, Ah+ ] = 1 is inherited from fh , h + ] = 1. 

I t e m  3. Q' belongs to the unimoduiar spectral class of Q: indeed, 
A dF = G dF G + with the unimodular factor 

G =  c ( 2 _  #o)_ t , c = ( -  1) x the reciprocal of e'(O, po) 

by routine computation from Items 1 and 2. 

I t e m  4. Q' is determined by a divisor p; (i<~g) in view of Item 3. I 
compute it. Ah+ vanishes identically at 2=/~o: in fact, at this place, 
e o = h  +, up to a factor that may be taken as unity, Ah+ = h + -  

for//To0. 

I t e m  2. This item is similar: 
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Z -  lh + [h +, h+ ], and [h +, h'+ ] = ~ h2+ = Z; similarly, Ah_ is infinite. 
What one must do is to divide Ah+ by 2 - P o  and to multiply Ah_ by the 
same factor. Then Ah+ (0) = ( 2 -  #o)-~ h+ (0) and A h  (0 )=  ( 2 -  #o) h_ (0), 
of which the first vanishes at the projection of Pi if sign p i=  +1 with the 
sole exception ofp o, while the second vanishes at the projection of pi if sign 
JOg= -1 ,  and at the projection of p o as well: in short, the divisor p~ (i <~g) of 
Q' is the same as that of Q except that the signature of Po is reversed. 

Item 5. Q' belongs to the (suitably closed) additive class of Q. This 
will complete the proof that the additive and the unimodular spectral 
classes are the same. 

Proof. The field X: Q ~ 2G'xx(2) ( 2 < 0 )  is expressed as m'11 with 
mll = P/R, as in Step 5, and everything updated by displacement of the 
origin from 0 to x. Fix 2 ; <  . . -2 'g<0 and let X o ..... Xg be the 
corresponding fields. Then 

by interpolation of P(2) off 2;,..., 2'g, and the fact that X is infinitesimal 
addition 35 permits one to write 

in which o is the point ( - 1 ,  - 1 )  and 

COj= H ~ ~' , ~ j ;~ -4  R(,~j) R(;~) 

~SA~'A ~ = I - A 2 X + . . .  for p=(2, +1) andp '=(2+A2,  +l); see KDV (1). 

+ 
-1 

~ r ~ / ~ 0  e 

Figure 2 
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is a differential of the second kind with simple pole at o0. It follows that 

j = 0  '~O A 

= A  2~ exp - 2  ~ % 
j = o [ _ 1.~oj - spec Q 

in which C is the sum of the paths indicated in Fig. 2 and the final form of 
the exponentiated integral is due to cancellation of radicals on the bands of 
spec Q, leaving a real combination of Xo,..., X e. The upshot is that A can 
be approximated by (infinitesimal) additions, whence AQ = Q' belongs to 
the additive class. 

Ampl i f ica t ion .  I clarify the motion of the divisor Pi (i<~g) in 
response to displacement of the origin. The point Pi depends upon x, its 
projection #i moving back and forth in its gap according to the rule #; = 
sign pt/m'H(#i), in which mll is the updated function 2h (x) h (x). The tur- 
ning around of, e.g., #2 at the bottom of the honest band [ 2 f ,  )oj- ] is easy 
to understand: to the left of 2+, m11(2) is a nonvanishing multiple of 
( # 2 - 2 ) ( 2 + - 2 )  -1/2 , so that, with s ignp2= +1, #~ is (approximately) 
proportional to (2+ - #2) 1/2, and the substitution #2 = 2+ - sin2 0 shows 
that 0 moves at (nearly) constant speed through the collision of/~2 with 2 +. 
The collision of roots at bound states is different. Let 2 + = 23 be such a 
bound state and let #2 hit it at x = 0 .  Then for small x < 0 ,  P2 < 2 f  is 
traveling to the right, #3 is to the right of 23, and mu(2)  has a root at #2, 

�9 �9 | 

Figure 4 

822/46/5-6-23 
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Figure 5 

4- X3 oo 

a pole at 23, and a root at I~3. Now the total degree of mll  in the vicinity 
of 2~- cannot change in the small, so, at collision, mll has lost its pole and 
) ~  has joined the spectrum of QO. But 2 ]  = 23 is a bound state, so 2 + 
spec QO means that the corresponding eigenfunction e2 vanishes at x = O, 
i.e., 2~- = 23 belongs to spec QO as well, which is to say that/*3 has arrived 
at 23, bringing an extra root to mH, for a total count of two roots + one 
pole = one (simple) root at 2~- = 23. To sum up: the roots g2 and g3 collide 
at 23 = 23 precisely at the (>72) roots of e2(x)= 0. The rule of collisions at 
other bound states is similar. The only exception concerns #1, which can- 
not hit 2i- if the latter is a bound state, in view of the fact that a ground 
state eigenfunction is root-free. Now the motion of the divisor can be 
integrated in a simple way. The radical R is regarded as defining a 
hyperelliptic curve K, as in Fig. 3, with double points coming from the 
bound states. This suggests the introduction of differentials of the first kind 
of the form coj= 2J- ld2/R(2)  (j<~g), permitting one to map the divisor 
over to the Jacobi variety J of K where it moves in a straight line at con- 
stant speed. It is a by-product that every possible divisor ~ (i ~ g )  with pro- 
jections in the closed gaps actually occurs in the additive class, permitting one 
to identify that class with the (real) Jacobi variety. I do not give details, but 
compare McKean38) 

General Picture. The upshot of the whole discussion is that the 
additive class of finite dimension is nothing but the general leaf of the 
Neumann system of g uncoupled oscillators x i ' +  co2xi = 0 (i ~<g) with dis- 
tinct frequencies col ..... cog constrained to move on the unit sphere Xl 2 + 
�9 ' .  + x~ = 1 by the imposition of the normal force f =  [2(co2x 2 + ...  + 

2 2 cogXg) + I] x; see Refs. 7, 8, and 13 for background. The special case of g 
solitons appears when all the short bands collapse, as in Fig. 4, while the 
case of Hill's equation with finitely many gaps appears when all the short 
bands are honest, as in Fig. 5. The general leaf is obtained from the Hill's 
leaf by collapse of one or more bands. 
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